$V = 3911.08 (13) \text{ Å}^3$

 $0.42 \times 0.29 \times 0.26 \text{ mm}$

Mo $K\alpha$ radiation

 $\mu = 0.69 \text{ mm}^{-1}$

T = 153 (2) K

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diacetatobis[1,3-bis(benzimidazol-2-yl)benzene]zinc(II) dihydrate

Fa-Yan Meng,* Lei Teng, Xue Mei Chen, Bi Lin Zhao and **Ping Jiao**

School of Chemistry and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China Correspondence e-mail: mfy1114@yahoo.com.cn

Received 19 November 2007; accepted 30 December 2007

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.002 Å; R factor = 0.027; wR factor = 0.080; data-to-parameter ratio = 15.7.

In the title complex, $[Zn(CH_3COO)_2(C_{20}H_{14}N_4)_2] \cdot 2H_2O$, the Zn^{II} atom, which lies on a crystallographic twofold axis, is coordinated by two O atoms of two acetate ligands and two N atoms from two 1,3-bis(benzimidazol-2-yl)benzene ligands in a distorted tetrahedral geometry. The complex molecules and solvent water molecules are connected via O-H···N, O-H...O and N-H...O hydrogen bonds, forming a threedimensional network.

Related literature

For related literature, see: Meng et al. (2007); Chawla et al. (1997); Shivakumaraiah et al. (2003).

Experimental

Crystal data

 $[Zn(C_2H_3O_2)_2(C_{20}H_{14}N_4)_2]\cdot 2H_2O$ $M_r = 840.19$ Orthorhombic, Pbcn a = 14.1429 (3) Å b = 16.7005 (4) Å c = 16.5588 (3) Å

Data collection

Rigaku R-AXIS SPIDER	36097 measured reflections
diffractometer	4483 independent reflections
Absorption correction: multi-scan	4032 reflections with $I > 2\sigma(I)$
(Higashi, 1995)	$R_{\rm int} = 0.022$
$T_{\min} = 0.760, \ T_{\max} = 0.841$	

Refinement

_ ..

$R[F^2 > 2\sigma(F^2)] = 0.027$	H atoms treated by a mixture of
$wR(F^2) = 0.080$	independent and constrained
S = 1.06	refinement
4483 reflections	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
285 parameters	$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$
4 restraints	

Table 1			
Hvdrogen-bond g	eometry (Å.	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N2-H2N\cdots O3$	0.871 (9)	1.817 (9)	2.6848 (14)	174.0 (17)
$N3-H3N\cdotsO1^{i}$	0.858 (9)	2.158 (10)	3.0079 (14)	170.6 (17)
O3−H3AO···N4 ⁱⁱ	0.839 (9)	1.968 (10)	2.8046 (16)	175 (2)
$O3-H3BO\cdots O2^{iii}$	0.839 (9)	1.991 (10)	2.8295 (15)	179 (2)
Summature and and (i)		(;;)	1. (:::) 1	1 - 1

Symmetry codes: (i) -x + 1, y, $-z + \frac{1}{2}$; (ii) x, -y + 1, $z - \frac{1}{2}$; (iii) $x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: RAPID-AUTO (Rigaku 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

We thank the Huangshi Institute of Technology (Grant No. 07yjz07A) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2142).

References

Chawla, S. K. & Gill, B. K. (1997). Polyhedron, 16, 1315-1322.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Meng, F.-Y., Dong, W.-H. & Ng, S. W. (2007). Acta Cryst. E63, m2398-m2399. Rigaku (2004). RAPID-AUTO. Version 3.0. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2000). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shivakumaraiah & Nanje Gowda, N.-M. (2003). Synth. React. Inorg. Met.-Org. Chem. 33, 1207-1220.

supplementary materials

Acta Cryst. (2008). E64, m319 [doi:10.1107/S160053680706878X]

Diacetatobis[1,3-bis(benzimidazol-2-yl)benzene]zinc(II) dihydrate

F.-Y. Meng, L. Teng, X. M. Chen, B. L. Zhao and P. Jiao

Comment

Benzimidazolyl derivatives and their transition metal complexes have been extensively investigated (Shivakumaraiah *et al.*, 2003). In previous works zinc terephthalate and zinc succinate adducts of 1,3-bis(benzimidazol-2-ylmethyl)benzene have been reported (Meng *et al.*, 2007; Meng *et al.*, 2007). The present work reports the crystal structure of $[Zn(ac)_2(L)_2]$ ·2H₂O, (I), where *L* is 1,3-bis(benzimidazol-2-ylmethyl)benzene and *ac* is the acetate ion, which assumes a similar geometry to previously reported complexes in the literature (Meng *et al.*, 2007). (shown in scheme I). The crystal structure of (I) consists of the mononuclear zinc(II) complex and solvato water molecules (Fig. 1). The Zn atom is four-coordinate with two N atoms and two O atoms from the 1,3-bis(benzimidazol-2- ylmethyl)benzene and the acetate ligands, respectively. (Zn—O: 2.0145 (9) Å, Zn—N: 2.0477 (10) Å, coordination angle range: 101.39 (4)- 127.50 (5) °.). The complex and solvent water molecules are connected *via* O—H···N, O—H···O and N—H···O hydrogen bonds to form a three-dimensional network (Table 1).

Experimental

The *N*-heterocycle was prepared according to reported procedure (Chawla & Gill,1997). Zinc nitrate hexahydrate (0.074 g, 0.25 mmol), 1,3-bis(benzimidazolyl-2-ylmethyl)benzene (0.15 g, 0.5 mmol), acetic acid (2 ml) and water (15 ml) were placed in a 23 ml Teflon-lined stainless steel Parr bomb. The bomb was heated at 433 K for 5 days and cooled to room temperature at 5 K h^{-1} .Colorless block crystals were obtained in 15% yield.

Refinement

H atoms attached to oxygen and nitrogen were located in the Fourier maps, and refined with restrained N—H = 0.87 Å, O—H = 0.84 Å distances and free isotropic displacement factors. C—H's were placed at geometrically idealized positions with C—H = 0.95 Å (aromatic), 0.98 Å (methyl) and $U_{iso}(H) = 1.2$ (aromatic), 1.5(methyl) $U_{eq}(C)$.

Figures

Fig. 1. Molecular unit of (I) showing the coordination geometry of zinc. Displacement ellipsoids drawn at a 50% probability level. The independent part of the molecule drawn with heavy bonds; the (overlapping) symmetry related one, with light bonds. Only H atoms invovled in H-bonding (in dashed lines) have been included.[Symmery code (i): 1 - x, y, 1/2 - 1

Diacetatobis[1,3-bis(benzimidazol-2-yl)benzene]zinc(II) dihydrate

F(000) = 1744

 $\theta = 3.1 - 27.5^{\circ}$

 $\mu = 0.69 \text{ mm}^{-1}$

Block, colourless

 $0.42\times0.29\times0.26~mm$

T = 153 K

 $D_{\rm x} = 1.427 \ {\rm Mg \ m^{-3}}$

Mo K α radiation, $\lambda = 0.71073$ Å

Cell parameters from 29371 reflections

Crystal data

 $[Zn(C_2H_3O_2)_2(C_{20}H_{14}N_4)_2] \cdot 2H_2O$ $M_r = 840.19$ Orthorhombic, *Pbcn* Hall symbol: -P 2n 2ab a = 14.1429 (3) Å b = 16.7005 (4) Å c = 16.5588 (3) Å V = 3911.08 (13) Å³ Z = 4

Data collection

Rigaku R-axis SPIDER diffractometer	4483 independent reflections
Radiation source: Rotating Anode	4032 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.022$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan (Higashi, 1995)	$h = -18 \rightarrow 18$
$T_{\min} = 0.761, T_{\max} = 0.841$	$k = -21 \rightarrow 21$
36097 measured reflections	$l = -21 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.027$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.080$	$w = 1/[\sigma^2(F_o^2) + (0.0456P)^2 + 1.3144P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
4483 reflections	$\Delta \rho_{max} = 0.35 \text{ e} \text{ Å}^{-3}$
285 parameters	$\Delta \rho_{min} = -0.35 \text{ e } \text{\AA}^{-3}$
4 restraints	Extinction correction: <i>SHELXL</i> , Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	Extinction coefficient: $0.0019(3)$

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0019 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn	0.5000	0.200846 (12)	0.2500	0.02036 (8)
01	0.43810 (7)	0.14750 (5)	0.15455 (5)	0.0247 (2)
O2	0.38164 (9)	0.08183 (6)	0.25947 (6)	0.0346 (2)
N1	0.59696 (7)	0.27314 (6)	0.19415 (6)	0.0199 (2)
N2	0.65402 (8)	0.38807 (6)	0.14616 (6)	0.0229 (2)
N3	0.58881 (8)	0.23678 (7)	0.50153 (7)	0.0239 (2)
N4	0.62077 (8)	0.34087 (7)	0.58182 (7)	0.0270 (2)
C1	0.62241 (8)	0.26200 (7)	0.11345 (7)	0.0200 (2)
C2	0.62085 (9)	0.19356 (8)	0.06492 (8)	0.0243 (3)
H2	0.5999	0.1434	0.0853	0.029*
C3	0.65122 (10)	0.20211 (8)	-0.01423 (8)	0.0287 (3)
Н3	0.6509	0.1567	-0.0488	0.034*
C4	0.68243 (10)	0.27583 (9)	-0.04472 (8)	0.0309 (3)
H4	0.7013	0.2794	-0.0997	0.037*
C5	0.68638 (10)	0.34315 (8)	0.00321 (8)	0.0277 (3)
Н5	0.7083	0.3930	-0.0172	0.033*
C6	0.65670 (9)	0.33473 (7)	0.08296 (7)	0.0220 (2)
C7	0.61950 (8)	0.34911 (7)	0.21111 (7)	0.0203 (2)
C8	0.61087 (8)	0.38614 (7)	0.29088 (7)	0.0214 (2)
C9	0.59900 (9)	0.46915 (8)	0.30015 (8)	0.0252 (3)
Н9	0.5977	0.5031	0.2541	0.030*
C10	0.58919 (10)	0.50126 (8)	0.37704 (9)	0.0284 (3)
H10	0.5807	0.5573	0.3833	0.034*
C11	0.59159 (9)	0.45248 (8)	0.44476 (8)	0.0264 (3)
H11	0.5852	0.4752	0.4971	0.032*
C12	0.60338 (9)	0.36969 (7)	0.43607 (8)	0.0223 (2)
C13	0.60420 (9)	0.31727 (8)	0.50712 (8)	0.0229 (2)
C14	0.61670 (10)	0.27139 (8)	0.62767 (8)	0.0272 (3)
C15	0.63182 (12)	0.26000 (10)	0.71047 (9)	0.0375 (3)
H15	0.6462	0.3038	0.7450	0.045*
C16	0.62511 (14)	0.18299 (11)	0.74009 (9)	0.0405 (4)
H16	0.6352	0.1738	0.7960	0.049*
C17	0.60381 (11)	0.11817 (9)	0.69005 (9)	0.0359 (3)
H17	0.5993	0.0661	0.7128	0.043*
C18	0.58912 (10)	0.12804 (8)	0.60805 (9)	0.0305 (3)
H18	0.5750	0.0840	0.5738	0.037*
C19	0.59617 (9)	0.20575 (8)	0.57840 (8)	0.0248 (3)
C20	0.61400 (9)	0.33772 (7)	0.35896 (8)	0.0219 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H20	0.6236	0.2817	0.3528	0.026*
C21	0.39227 (9)	0.08843 (7)	0.18557 (8)	0.0236 (3)
C22	0.35683 (12)	0.02507 (9)	0.12828 (9)	0.0359 (3)
H22A	0.4009	-0.0202	0.1280	0.043*
H22B	0.3522	0.0475	0.0738	0.043*
H22C	0.2943	0.0067	0.1458	0.043*
H2N	0.6812 (12)	0.4349 (7)	0.1461 (11)	0.043 (5)*
H3N	0.5746 (13)	0.2099 (9)	0.4590 (8)	0.038 (5)*
O3	0.73576 (9)	0.53271 (6)	0.13461 (7)	0.0396 (3)
H3AO	0.7035 (13)	0.5725 (9)	0.1205 (12)	0.055 (6)*
H3BO	0.7795 (12)	0.5466 (12)	0.1658 (11)	0.057 (6)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn	0.02511 (12)	0.01605 (12)	0.01992 (12)	0.000	0.00432 (7)	0.000
O1	0.0304 (5)	0.0176 (4)	0.0262 (5)	-0.0038 (3)	0.0034 (4)	0.0008 (3)
02	0.0477 (6)	0.0271 (5)	0.0291 (5)	-0.0057 (5)	0.0114 (4)	0.0010 (4)
N1	0.0221 (5)	0.0175 (5)	0.0201 (5)	-0.0003 (4)	0.0027 (4)	-0.0001 (4)
N2	0.0252 (5)	0.0195 (5)	0.0239 (5)	-0.0036 (4)	-0.0017 (4)	0.0035 (4)
N3	0.0279 (6)	0.0229 (5)	0.0208 (5)	-0.0006 (4)	-0.0004 (4)	-0.0012 (4)
N4	0.0323 (6)	0.0267 (6)	0.0219 (5)	-0.0011 (4)	-0.0026 (4)	-0.0012 (4)
C1	0.0184 (5)	0.0218 (6)	0.0196 (6)	0.0018 (4)	0.0014 (4)	0.0022 (5)
C2	0.0241 (6)	0.0228 (6)	0.0260 (6)	0.0022 (5)	0.0035 (5)	-0.0003 (5)
C3	0.0284 (7)	0.0333 (7)	0.0243 (6)	0.0048 (5)	0.0026 (5)	-0.0045 (5)
C4	0.0289 (7)	0.0421 (8)	0.0216 (6)	0.0030 (6)	0.0033 (5)	0.0035 (6)
C5	0.0276 (6)	0.0318 (7)	0.0237 (6)	-0.0022 (5)	0.0004 (5)	0.0090 (5)
C6	0.0205 (6)	0.0229 (6)	0.0226 (6)	-0.0001 (5)	-0.0016 (5)	0.0030 (5)
C7	0.0200 (5)	0.0182 (5)	0.0227 (6)	0.0001 (4)	-0.0008 (5)	0.0020 (5)
C8	0.0205 (6)	0.0202 (6)	0.0236 (6)	-0.0015 (4)	-0.0018 (5)	-0.0015 (5)
C9	0.0278 (6)	0.0191 (6)	0.0287 (6)	-0.0012 (5)	-0.0045 (5)	0.0013 (5)
C10	0.0335 (7)	0.0187 (6)	0.0332 (7)	0.0014 (5)	-0.0055 (6)	-0.0043 (5)
C11	0.0288 (6)	0.0240 (6)	0.0263 (6)	0.0019 (5)	-0.0022 (5)	-0.0063 (5)
C12	0.0211 (6)	0.0219 (6)	0.0239 (6)	-0.0001 (4)	-0.0022 (5)	-0.0009 (5)
C13	0.0219 (6)	0.0233 (6)	0.0233 (6)	0.0009 (5)	-0.0011 (5)	-0.0023 (5)
C14	0.0276 (7)	0.0285 (7)	0.0255 (6)	-0.0005 (5)	-0.0012 (5)	0.0005 (5)
C15	0.0499 (9)	0.0384 (8)	0.0241 (7)	-0.0034 (7)	-0.0054 (6)	-0.0009 (6)
C16	0.0507 (10)	0.0463 (9)	0.0246 (7)	0.0003 (8)	-0.0030 (6)	0.0074 (6)
C17	0.0404 (8)	0.0334 (7)	0.0338 (7)	0.0027 (6)	0.0038 (6)	0.0093 (6)
C18	0.0341 (7)	0.0260 (6)	0.0313 (7)	0.0015 (5)	0.0036 (6)	0.0016 (6)
C19	0.0224 (6)	0.0287 (6)	0.0234 (6)	0.0013 (5)	0.0013 (5)	0.0016 (5)
C20	0.0229 (6)	0.0182 (6)	0.0246 (6)	-0.0002 (4)	-0.0018 (5)	-0.0016 (5)
C21	0.0241 (6)	0.0177 (6)	0.0290 (6)	0.0003 (4)	0.0019 (5)	0.0022 (5)
C22	0.0432 (9)	0.0275 (7)	0.0370 (8)	-0.0092 (6)	-0.0095 (6)	0.0003 (6)
O3	0.0458 (7)	0.0217 (5)	0.0511 (7)	-0.0099 (5)	-0.0215 (5)	0.0115 (5)

Geometric parameters (Å, °)

Zn—O1	2.0145 (9)	C8—C20	1.3880 (17)

Zn—O1 ⁱ	2.0145 (9)	C8—C9	1.4047 (17)
Zn—N1	2.0477 (10)	C9—C10	1.3886 (19)
Zn—N1 ⁱ	2.0477 (10)	С9—Н9	0.9500
O1—C21	1.2873 (15)	C10—C11	1.386 (2)
O2—C21	1.2378 (16)	C10—H10	0.9500
N1—C7	1.3380 (16)	C11—C12	1.4001 (17)
N1—C1	1.3964 (15)	C11—H11	0.9500
N2—C7	1.3485 (16)	C12—C20	1.3923 (17)
N2—C6	1.3748 (16)	C12—C13	1.4664 (18)
N2—H2N	0.871 (9)	C14—C19	1.3970 (19)
N3—C13	1.3649 (16)	C14—C15	1.4006 (19)
N3—C19	1.3782 (17)	C15—C16	1.380 (2)
N3—H3N	0.858 (9)	C15—H15	0.9500
N4—C13	1.3193 (17)	C16—C17	1.396 (2)
N4	1.3878 (17)	C16—H16	0.9500
C1—C2	1.3974 (17)	C17—C18	1.384 (2)
C1—C6	1.4020 (17)	С17—Н17	0.9500
C2—C3	1.3867 (19)	C18—C19	1.3912 (19)
С2—Н2	0.9500	C18—H18	0.9500
C3—C4	1.402 (2)	C20—H20	0.9500
С3—Н3	0.9500	C21—C22	1.5069 (18)
C4—C5	1.377 (2)	C22—H22A	0.9800
C4—H4	0.9500	C22—H22B	0.9800
C5—C6	1.3928 (18)	C22—H22C	0.9800
С5—Н5	0.9500	ОЗ—НЗАО	0.839 (9)
С7—С8	1.4636 (17)	O3—H3BO	0.839 (9)
O1—Zn—O1 ⁱ	127.50 (5)	C11—C10—C9	120.81 (12)
O1—Zn—N1	101.39 (4)	C11—C10—H10	119.6
O1 ⁱ —Zn—N1	108.91 (4)	C9—C10—H10	119.6
O1—Zn—N1 ⁱ	108.91 (4)	C10-C11-C12	120.01 (12)
$O1^{i}$ —Zn— $N1^{i}$	101.39 (4)	C10-C11-H11	120.0
N1—Zn—N1 ⁱ	107.74 (6)	C12—C11—H11	120.0
C21—O1—Zn	104.16 (8)	C20—C12—C11	119.07 (12)
C7—N1—C1	105.41 (10)	C20-C12-C13	120.39 (11)
C7—N1—Zn	128.60 (8)	C11—C12—C13	120.54 (12)
C1—N1—Zn	121.75 (8)	N4—C13—N3	112.71 (12)
C7—N2—C6	107.73 (10)	N4—C13—C12	125.12 (12)
C7—N2—H2N	126.4 (12)	N3—C13—C12	122.16 (11)
C6—N2—H2N	124.6 (12)	N4—C14—C19	110.20 (12)
C13—N3—C19	107.19 (11)	N4—C14—C15	130.00 (13)
C13—N3—H3N	127.4 (12)	C19—C14—C15	119.79 (13)
C19—N3—H3N	125.3 (12)	C16-C15-C14	117.66 (14)
C13—N4—C14	104.82 (11)	C16—C15—H15	121.2
N1—C1—C2	130.94 (11)	C14—C15—H15	121.2
N1—C1—C6	108.57 (11)	C15—C16—C17	121.78 (14)
C2—C1—C6	120.46 (11)	C15—C16—H16	119.1
C3—C2—C1	117.04 (12)	C17—C16—H16	119.1

supplementary materials

С3—С2—Н2	121.5	C18—C17—C16	121.50 (14)
C1—C2—H2	121.5	C18—C17—H17	119.3
C2—C3—C4	121.89 (13)	С16—С17—Н17	119.3
С2—С3—Н3	119.1	C17—C18—C19	116.54 (14)
С4—С3—Н3	119.1	C17—C18—H18	121.7
C5—C4—C3	121.48 (12)	C19—C18—H18	121.7
С5—С4—Н4	119.3	N3—C19—C18	132.16 (13)
C3—C4—H4	119.3	N3—C19—C14	105.07 (11)
C4—C5—C6	116.86 (12)	C18—C19—C14	122.74 (13)
С4—С5—Н5	121.6	C8—C20—C12	121.19 (11)
С6—С5—Н5	121.6	C8—C20—H20	119.4
N2—C6—C5	131.66 (12)	С12—С20—Н20	119.4
N2—C6—C1	106.12 (11)	O2—C21—O1	121.59 (12)
C5—C6—C1	122.22 (12)	O2—C21—C22	121.30 (12)
N1—C7—N2	112.11 (11)	O1—C21—C22	117.02 (12)
N1—C7—C8	124.76 (11)	C21—C22—H22A	109.5
N2—C7—C8	123.11 (11)	C21—C22—H22B	109.5
C20—C8—C9	119.35 (11)	H22A—C22—H22B	109.5
C20—C8—C7	118.95 (11)	C21—C22—H22C	109.5
C9—C8—C7	121.70 (12)	H22A—C22—H22C	109.5
C10—C9—C8	119.55 (12)	H22B—C22—H22C	109.5
С10—С9—Н9	120.2	НЗАО—ОЗ—НЗВО	110.7 (19)
С8—С9—Н9	120.2		
O1 ⁱ —Zn—O1—C21	40.82 (7)	C20—C8—C9—C10	-0.95 (19)
N1—Zn—O1—C21	165.66 (8)	C7—C8—C9—C10	178.68 (12)
N1 ⁱ —Zn—O1—C21	-80.92 (8)	C8—C9—C10—C11	0.4 (2)
O1—Zn—N1—C7	137.44 (10)	C9—C10—C11—C12	-0.4 (2)
O1 ⁱ —Zn—N1—C7	-86.05 (11)	C10-C11-C12-C20	0.97 (19)
$N1^{i}$ —Zn—N1—C7	23.14 (9)	C10-C11-C12-C13	-178.81 (12)
O1—Zn—N1—C1	-15.92 (10)	C14—N4—C13—N3	0.51 (15)
O1 ⁱ —Zn—N1—C1	120.59 (9)	C14—N4—C13—C12	-178.52 (12)
$N1^{i}$ —Zn— $N1$ — $C1$	-130.22 (10)	C19—N3—C13—N4	-0.16 (15)
C7—N1—C1—C2	175.43 (13)	C19—N3—C13—C12	178.90 (11)
Zn—N1—C1—C2	-25.88 (18)	C20-C12-C13-N4	160.33 (13)
C7—N1—C1—C6	-2.48 (13)	C11—C12—C13—N4	-19.9 (2)
Zn—N1—C1—C6	156.20 (8)	C20-C12-C13-N3	-18.61 (18)
N1—C1—C2—C3	-179.94 (13)	C11—C12—C13—N3	161.17 (12)
C6—C1—C2—C3	-2.24 (19)	C13—N4—C14—C19	-0.68 (15)
C1—C2—C3—C4	0.1 (2)	C13—N4—C14—C15	177.69 (15)
C2—C3—C4—C5	1.5 (2)	N4-C14-C15-C16	-178.56 (15)
C3—C4—C5—C6	-0.9 (2)	C19—C14—C15—C16	-0.3 (2)
C7—N2—C6—C5	-179.54 (13)	C14—C15—C16—C17	-0.2 (3)
C7—N2—C6—C1	-0.20 (13)	C15—C16—C17—C18	0.5 (3)
C4—C5—C6—N2	177.96 (13)	C16—C17—C18—C19	-0.3 (2)
C4—C5—C6—C1	-1.29 (19)	C13—N3—C19—C18	-178.53 (14)
N1—C1—C6—N2	1.67 (13)	C13—N3—C19—C14	-0.26 (14)
C2-C1-C6-N2	-176.50 (11)	C17—C18—C19—N3	177.85 (14)

N1-C1-C6-C5	-178.92 (12)	C17-C18-C19-C14	-0.2 (2)
C2-C1-C6-C5	2.91 (19)	N4-C14-C19-N3	0.59 (15)
C1—N1—C7—N2	2.43 (14)	C15-C14-C19-N3	-177.97 (13)
Zn—N1—C7—N2	-154.27 (9)	N4-C14-C19-C18	179.06 (13)
C1—N1—C7—C8	-175.89 (11)	C15-C14-C19-C18	0.5 (2)
Zn—N1—C7—C8	27.41 (17)	C9—C8—C20—C12	1.52 (18)
C6—N2—C7—N1	-1.44 (14)	C7—C8—C20—C12	-178.12 (11)
C6—N2—C7—C8	176.92 (11)	C11—C12—C20—C8	-1.53 (19)
N1—C7—C8—C20	25.18 (18)	C13—C12—C20—C8	178.26 (12)
N2	-152.96 (12)	Zn—O1—C21—O2	10.67 (15)
N1—C7—C8—C9	-154.45 (12)	Zn—O1—C21—C22	-165.93 (10)
N2	27.41 (18)		
Symmetry codes: (i) $-x+1$, y , $-z+1/2$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2N…O3	0.87 (1)	1.82(1)	2.6848 (14)	174.(2)
N3—H3N···O1 ⁱ	0.86(1)	2.16(1)	3.0079 (14)	171.(2)
O3—H3AO···N4 ⁱⁱ	0.84 (1)	1.97 (1)	2.8046 (16)	175 (2)
O3—H3BO····O2 ⁱⁱⁱ	0.84 (1)	1.99 (1)	2.8295 (15)	179 (2)
Symmetry codes: (i) $-x+1$, y , $-z+1/2$; (ii) x , $-y+$	1, <i>z</i> -1/2; (iii) <i>x</i> +1/2,	y+1/2, -z+1/2.		

Fig. 1